BAĞIMSIZ ÖRNEKLEM T TESTİ (INDEPENDENT SAMPLES T TEST)

İki değişkenli durumlarda (cinsiyet vb.) ve ön test – son test (bağımlı) olmayan ölçeklerde kullanılmaktadır ve verilerin normal dağılması gerekmektedir.

SPSS'de **"Bağımsız Örneklem T Testi (Independent Samples T Test)"** için izlenmesi gereken yol **"ANALYZE** \rightarrow **COMPARE MEANS** \rightarrow **INDEPENDENT SAMPLES T TEST"** şeklindedir.

	Analyze	Direct <u>M</u> arketing	<u>G</u> raphs	<u>U</u> tilities	Add- <u>o</u> ns	<u>W</u> ind	ow <u>H</u>	elp
~	Repo	orts	*	- ×				
	D <u>e</u> so	criptive Statistics	•					
	Ta <u>b</u> le	es	•					
	Co <u>m</u>	pare Means	•	Means				
	<u>G</u> ene	eral Linear Model	•	One-S	ample T Te	st		81
ltı	Gene	erali <u>z</u> ed Linear Mode	ls 🕨		ndent-Sam	nples T T	Test	21
	Mi <u>x</u> eo	d Models	•	Paired	Samples	TTest		21
ltı	<u>C</u> orre	elate	•			1 1656		81
ltı	<u>R</u> egr	ression	•	<u>One-w</u>	ay ANOVA.			I
ltı	L <u>o</u> gli	near	•	Memu	ır	Hiç	Sil	k sil
	Neur	al Networks	*	Sigortalı işe	çi Herz	aman	Her za	mai
	Clas	sifv		Memu	ır	Hiç	Sil	(SI
	Dime	ension Reduction	•	Emek	li S	ik sik		Hi
	Scale			Ev hanın	ni Na	adiren	Ba	azei
ltı	Neer			Çalışmıyo	or E	Bazen	Her za	mai
	- Nout	arametric rests	, P	Memu	ur E	Bazen	Sil	k sil
	Fore	casting		Sigortalı işe	çi Herz	aman	Nac	direı
ltı	<u>S</u> urvi	val	•	Çalışmıyo	or E	Bazen	Sil	c sil
	M <u>u</u> ltij	ple Response	•	Ev hanın	ni E	Bazen	Her za	mai
	🐝 Missi	ng Value Anal <u>y</u> sis		Diğe	er Na	adiren	Nac	direı
	Mul <u>t</u> ij	ple Imputation	•	Ev hanın	ni Herz	aman	Her za	mai
	Com	p <u>l</u> ex Samples	•	Sigortalı işe	çi Na	adiren	Her za	mai
	🆶 S <u>i</u> mu	lation		Ev hanin	าเ	Hiç	Her za	mai
	<u>Q</u> ual	ity Control	•	Ev hanin	ni Na	adiren	Sil	k sil
	ROC	Curve		Ev hanin	ni Na	adiren	Ba	azei
	IBM S	PSS Amos		Memu	ur E	Bazen	Sil	k sil
			LIJC	Ev hanin	าเ	Hic	Her za	mai

İşlemler yapıldıktan sonra karşınıza **"Independent Samples T Test"** iletişim penceresi gelecektir. Bu pencereden inceleyeceğiniz değişkeni "Örnekte Faktör1" **"Variable(s)"** kutucuğunun içine, gruplandırmada kullanacağınız değişkeni "örnekte cinsiyet" **"Grouping Variable"** satırına oklar yardımıyla gönderin.

laire	n Sik sik	14				
ar t	lndependent-Sa	mples T Test				x
ar				Test Variable(s):		Options
ar	🖋 M21	-	<u> </u>	🔗 Faktör1		Destation
ər	N22					Bootstrap
	💑 M23		•			
-	💑 M24					
Id	₩25					
a	₩26					
ar	₩27			Grouping Variable:		
ık	● M28			Cinsiyet(? ?)		
an	₩29 ♣ M30		-	Define Groups		
an	0 0 m30				_	
		OK	Paste	Reset Cancel Help		
"					_	
ama	n Her zaman	26				

Bu aşamada kullanacağımız grupları tanımlamak gerek. Bunun için **"Define Groups...**" seçeneğini tıklayın. Karşınıza aşağıdaki iletişim kutusu gelecektir.

Define Groups	
Use specified values	
Group <u>1</u> : 1	
Group <u>2</u> : 2	
© <u>C</u> ut point:	
Continue Cancel Help	

Burada Kadınlar "1", Erkekler "2" ile temsil edildiğinden bu rakamları "Group1 ve Group2" satırlarına girdik. Sırasıyla "Continue, OK" seçeneklerini tıklayınız. Karşınıza aşağıdakine benzer bir tablo gelecektir. "Group Statistics" tablosunda her bir grupta kaç kişi bulunduğu, bunların ortalama değerleri ve bunlara ait standart sapma ve standart hata değerleri yer almaktadır.

	Group Statistics										
	Cinsiyet	Ν	Mean	Std. Deviation	Std. Error Mean						
Faktör1	Kadın	44	22,41	3,943	,594						
	Erkek	6	18,50	6,535	2,668						

Tabloda kadınların ortalamasının erkeklerin ortalamasından daha yüksek olduğu görülmektedir. Ancak bu farkın rastlantısal mı yoksa gerçek bir fark mı olduğunu belirleyebilmek işin **"Independent Samples Test"** tablosunu incelemek gerekir.

_			t-test Equality of Means						
		F	Sig.	t	df	Sig. (2- tailed)	Mean Difference	Std. Error Difference	
Faktör1	Equal variances assumed	3,621	,063	2,095	48	,041	3,909	1,866	
	Equal variances not assumed			1,430	5,507	,207	3,909	2,733	

Independent Samples Test

"Independent Samples Test" tablosunda bakılması gereken ilk sütun "F değeri" olmalıdır (*Bu tabloda Sig. değeri p değeridir*). Bu varyansların homojen olup olmadığını vermektedir. Eğer F değerinde p>0,05 ise "Sig. (2-tailed)" sütununun ilk kısmına, eğer p<0,05 ise "Sig. (2-tailed)" sütununun ikinci kısmına bakıp ona göre hipotezi test edip karar vermek gerekir. Bu tabloda F değerinin p değerini inceleyecek olursak p=0,063>0,05 olduğundan "Sig. (2-tailed)" sütununun ilk kısmına göre karar vermemiz gerekmektedir. O halde "Sig. (2-tailed" sütununa baktığımızda p=0,041<0,05 olduğundan alternatif hipotezi kabul etmemiz gerekmektedir. Yani cinsiyet ile Faktör1 düzeyi arasında ortalamalar yönünden %5 güvenle istatistiksel olarak anlamlı bir farklılık vardır yorumunu yapabiliriz.

"Bağımsız Örneklem T Testi (Independent Samples T Testi)" yapabilmemiz için verilerimizin normal dağılması gerektiğini söylemiştik. Aynı şartlar ve varsayımlar altında, eğer verilerimiz normal dağılımlı değilse o zaman "Bağımsız Örneklem T Testi (Independent Samples T Testi)" non-parametrik karşılığı olan "Mann-Whitney U Testi" uygulanması gerekir.

MANN-WHITNEY U TESTİ

İki değişkenli durumlarda (cinsiyet vb.) ve ön test – son test (bağımlı) olmayan ölçeklerde kullanılmaktadır ve verilerin normal dağılmaması gerekmektedir.

SPSS'de **"Mann-Whitney U Testi"** için izlenmesi gereken yol **"ANALYZE** \rightarrow **NONPARAMETRIC TESTS** \rightarrow **LEGACY DIALOGS** \rightarrow **2 INDEPENDENT SAMPLES"** şeklindedir.

	Reports	•	*						ABC
	Descriptive Statistics	•							
	Ta <u>b</u> les	•							
kt	Co <u>m</u> pare Means	•	var	var	var		var	var	
_	<u>G</u> eneral Linear Model	•							
_	Generalized Linear Models	•							
_	Mixed Models	•							
_	Correlate	•							
_	<u>R</u> egression	•							
_	L <u>o</u> glinear	•							
_	Neural Networks	•							
_	Classify	•							
_	Dimension Reduction	•							
_	Scale	•							
_									
	Nonparametric Tests	•	💧 One S	ample					
-	Nonparametric Lests Forecas <u>t</u> ing	•	🛕 <u>O</u> ne S	ample endent Samples	S				
_	Nonparametric Tests Forecas <u>t</u> ing Survival	• •	<u>∧</u> <u>O</u> ne S <u>∧</u> Indepe <u>∧</u> Relate	ample endent Samples ed Samples	S				
	<u>Nonparametric l'ests</u> Forecas <u>t</u> ing <u>S</u> urvival Multiple Response	• •	▲ <u>O</u> ne S ▲ Indepe	ample endent Samples ed Samples av Dialogs	3 		011		
	Nonparametric Lests Forecasţing Survival Multiple Response	* *	▲ <u>O</u> ne S ▲ Indepe ▲ Relate Legac	ample endent Samples ed Samples cy Dialogs	5	X 2	<u>C</u> hi-square		
	Nonparametric Lests Forecasting Survival Multiple Response Missing Value Analysis Multiple Imputation	* * *	▲ One S ▲ Indepe ▲ Relate Legac	ample endent Sample: ed Samples <mark>:y Dialogs</mark>	5 ►	0/1	<u>C</u> hi-square <u>B</u> inomial		
	Nonparametric Lests Forecasting Survival Multiple Response Missing Value Analysis Multiple Imputation Complex Samples	* * *	<u>∧</u> <u>O</u> ne S <u>∧</u> Indepa <u>∧</u> <u>R</u> elate <u>L</u> egac	ample endent Samples ed Samples cy Dialogs	5 •	2 2/1 1111	<u>C</u> hi-square <u>B</u> inomial <u>R</u> uns		
	Nonparametric Lests Forecasting Survival Multiple Response Missing Value Analysis Multiple Imputation Complex Samples Simulation	4 4 4	<u>∧</u> <u>O</u> ne S <u>∧</u> <u>I</u> ndepo <u>∧</u> <u>R</u> elate <u>L</u> egac	ample endent Samples ed Samples y Dialogs	S •	0/1 AAAB	<u>C</u> hi-square <u>B</u> inomial <u>R</u> uns <u>1</u> -Sample K-S		
	Nonparametric Lests Forecasting Survival Multiple Response Missing Value Analysis Multiple Imputation Complex Samples Simulation Quality Control	* * * *	<u>A</u> <u>O</u> ne S <u>A</u> <u>I</u> ndepo <u>A</u> <u>R</u> elate <u>L</u> egac	ample endent Sample: ed Samples y Dialogs	5 ▶		<u>C</u> hi-square Binomial Runs 1-Sample K-S 2 Independen	 Samples	
	Nonparametric Lests Forecasting Survival Multiple Response Missing Value Analysis Multiple Imputation Complex Samples Simulation Quality Control ROC Curve	* * *	<u>A</u> <u>O</u> ne S <u>A</u> <u>I</u> ndepo <u>A</u> <u>R</u> elate <u>L</u> egac	ample endent Sample: ed Samples y Dialogs	5 •		<u>C</u> hi-square Binomial Runs 1-Sample K-S 2 Independen K Independen	 Samples t Samples	
	Nonparametric Lests Forecasting Survival Multiple Response Missing Value Analysis Multiple Imputation Complex Samples Simulation Quality Control ROC Curye IBM SBSS Amage	* * * *	A One S A Indepu Relate	ample endent Samples ed Samples y Dialogs	\$		Chi-square Binomial Runs 1-Sample K-S 2 Independen K Independen 2 Related San	 : Samples t Samples	
	Nonparametric Lests Forecasting Survival Multiple Response Missing Value Analysis Multiple Imputation Complex Samples Simulation Quality Control ROC Curye IBM SPSS <u>A</u> mos	* * *	One S Indepu <u>Relate</u>	ample endent Sample: ed Samples y Dialogs	S		<u>C</u> hi-square Binomial Runs <u>1</u> -Sample K-S <u>2</u> Independen K Independen 2 Rejated San	 t <mark>Samples</mark> t Samples	

İşlemler yapıldıktan sonra karşınıza **"Two-Independent Samples Tests"** iletişim penceresi gelecektir. Bu pencereden inceleyeceğiniz değişkeni "Örnekte Faktörl" **"Test Variable Lists"** kutucuğunun içine, gruplandırmada kullanacağınız değişkeni "örnekte cinsiyet" **"Grouping Variable"** satırına oklar yardımıyla gönderin.

 ✓ M22 ✓ M23 ✓ M24 ✓ M25 ✓ M26 ✓ M27 ✓ M28 ✓ M29 ✓ M30 		•	Test Variable List: Faktör1 Grouping Variable: Cinsiyet(? ?) Define Groups	<u>Exact</u> Options
Test Type <u>Mann-Whi</u> Mo <u>s</u> es ext	itney U treme reacti	<u> </u>	<u>(</u> olmogorov-Smirnov Z <u>V</u> ald-Wolfowitz runs	

Bu aşamada kullanacağımız grupları tanımlamak gerek. Bunun için **"Define Groups...**" seçeneğini tıklayın. Karşınıza aşağıdaki iletişim kutusu gelecektir.

ta Two Indep	endent Samples:
Group <u>1</u> :	1
Group <u>2</u> :	2
Continue	Cancel Help

Burada Kadınlar "1", Erkekler "2" ile temsil edildiğinden bu rakamları "Group1 ve Group2" satırlarına girdik. Sırasıyla "Continue, OK" seçeneklerini tıklayınız. Karşınıza aşağıdakine benzer bir tablo gelecektir.

	Ranks									
	Cinsiyet	N	Mean Rank	Sum of Ranks						
Faktör1	Kadın	44	26,65	1172,50						
	Erkek	6	17,08	102,50						
	Total	50								

Test Statistics ^a					
	Faktör1				
Mann-Whitney U	81,500				
Wilcoxon W	102,500				
Z	-1,514				
Asymp. Sig. (2-tailed)	,034				
Exact Sig. [2*(1-tailed Sig.)]	,134 ^b				

a. Grouping Variable: Cinsiyet

b. Not corrected for ties.

"Test Statistics" tablosunda Asymp. Sig. (2-tailed) - Anlamlılık" satırındaki değerin 0,034 olduğu görülmektedir. Söz konusu bu değer p=0,034<0,05 olduğundan alternatif hipotezi kabul etmemiz gerekmektedir. Yani cinsiyet ile Faktör1 düzeyi arasında ortalamalar yönünden %5 güvenle istatistiksel olarak anlamlı bir farklılık vardır yorumunu yapabiliriz.

BAĞIMLI ÖRNEKLEM T TESTİ (PAIRED SAMPLES T TEST)

İki değişkenli durumlarda (cinsiyet vb.) ve ön test – son test (bağımlı) olan ölçeklerde kullanılmaktadır ve verilerin normal dağılması gerekmektedir.

SPSS'de **"Bağımlı Örneklem T Testi (Paired Samples T Test)"** için izlenmesi gereken yol **"ANALYZE** \rightarrow **COMPARE MEANS** \rightarrow **PAIRED SAMPLES T TEST"** şeklindedir.

_			
	Reports	•	🗰 🔛 🔜 🖾 🎬
	Descriptive Statistics	•	
	Ta <u>b</u> les	•	
kt	Co <u>m</u> pare Means	•	Means
	<u>G</u> eneral Linear Model	•	Cone-Sample T Test
	Generalized Linear Models	•	Independent-Samples T Test
_	Mixed Models	•	Paired-Samples T Test
_	Correlate	•	
_	Regression	•	One-way ANOVA
_	L <u>o</u> glinear	•	
_	Neural Networks	•	
_	Classify	•	
_	Dimension Reduction	•	
_	Sc <u>a</u> le	•	
-	Nonparametric Tests	•	
-	Forecasting	•	
-	Survival	•	
-	Multiple Response	•	
5	🗿 Missing Value Analysis		
-	Multiple Imputation	•	
	Complex Samples	•	
E	Simulation		
	Quality Control		
	ROC Curve		
	IBM SPSS Amos		
	20		

İşlemler yapıldıktan sonra karşınıza **"Paired Samples T Test"** iletişim penceresi gelecektir. Varsayalım ki örneğimiz 1 aylık bir süreçteki kan ölçümleri olsun. Faktör1 ilk ölçüm Faktör2 ise ikinci ölçüm olsun. Bu durumda pencereden inceleyeceğiniz değişkeni "Örnekte Faktör1" **"Variable1"** kutucuğunun içine, gruplandırmada kullanacağınız değişkeni "örnekte Faktör2" **"Variable2"** kutucuğuna oklar yardımıyla gönderin.

Paired-Samples T Te	st	-		-		— X
		Paired V	ariables:			Ontions
	-	Pair	Variable1	Variable2		
M22		1	🖋 [Faktör1]	🖉 [Faktör2]		<u>B</u> ootstrap
🖌 M23		2				
🖌 M24						
💑 M25					•	
💑 M26						
💑 M27					→	
💑 M28						
💑 M29						
👗 мзо					\leftrightarrow	
Faktör1						
Faktör2	-					
		<u> </u>				
	ОК	Paste	Reset Can	ncel Help		

Bu aşamadan sonra "**OK**" seçeneğini tıklayınız. Karşınıza aşağıdakine benzer bir tablo gelecektir. "**Paired Samples Statistics**" tablosunda her bir grupta kaç kişi bulunduğu, bunların ortalama değerleri ve bunlara ait standart sapma ve standart hata değerleri yer almaktadır.

Faired Sample's Statistics								
		Mean	Ν	Std. Deviation	Std. Error Mean			
Pair 1	Faktör1	21,94	50	4,433	,627			
	Faktör2	17,4400	50	2,34877	,33217			

Paired Samples Statistics

Tabloda Faktör1 ortalamasının Faktör2 ortalamasından daha yüksek olduğu görülmektedir. Ancak bu farkın rastlantısal mı yoksa gerçek bir fark mı olduğunu belirleyebilmek işin **"Paired Samples Test"** tablosunu incelemek gerekir.

		Paired	Differences		
		Mean	Std. Deviation	t	Sig. (2-tailed)
Pair 1	Faktör1 - Faktör2	4,50000	4,17598	7,620	,000

"Paired Samples Test" tablosunun **"Sig. (2-tailed) – Anlamlılık"** sütunundaki değerin p=0,000<0,05 olduğu görülmektedir. O halde ilk ölçüm ile son ölçüm arasında istatistiksel olarak %5 güvenle anlamlı bir farklılık vardır yorumunu yapabiliriz.

"Bağımlı Örneklem T Testi (Paired Samples T Testi)" yapabilmemiz için verilerimizin normal dağılması gerektiğini söylemiştik. Aynı şartlar ve varsayımlar altında, eğer verilerimiz normal dağılımlı değilse o zaman "Bağımlı Örneklem T Testi (Paired Samples T Testi)" non-parametrik karşılığı olan "Wilcoxon İşaretli İki Örneklem Testi" uygulanması gerekir.

WİLCOXON İŞARETLİ İKİ ÖRNEKLEM TESTİ

İki değişkenli durumlarda (cinsiyet vb.) ve ön test – son test (bağımlı) olmayan ölçeklerde kullanılmaktadır ve verilerin normal dağılmaması gerekmektedir.

SPSS'de "Wilcoxon İşaretli İki Örneklem Testi" için izlenmesi gereken yol "ANALYZE \rightarrow NONPARAMETRIC TESTS \rightarrow LEGACY DIALOGS \rightarrow 2 RELATED SAMPLES" şeklindedir.

<u>A</u> nalyze	Direct <u>M</u> arketing	<u>G</u> raphs	<u>U</u> tilities A	dd- <u>o</u> ns <u>W</u> ind	dow j	<u>H</u> elp		
Re <u>p</u> o	rts	*		🗱 🚃 4	\$ <u>}</u>			
D <u>e</u> sc	riptive Statistics	•						
Ta <u>b</u> le	S	•						
Com	oare Means	•	var	var	Vi	ar	var	var
<u>G</u> ene	ral Linear Model	•						
Gene	ralized Linear Mode	ls 🕨						
Mixed	Models	•						
<u>C</u> orre	late	•						
Regr	ession	•						
L <u>o</u> glii	near	•						
Neura	al Net <u>w</u> orks	•						
Class	si <u>f</u> y	•						
<u>D</u> ime	nsion Reduction	•						
Sc <u>a</u> le		•						
<u>N</u> onp	arametric Tests	•	💧 <u>O</u> ne San	nple				
Forec	asting	•	/ Independ	dent Samples				
<u>S</u> urviv	al	•	Related	Samples				
M <u>u</u> ltip	le Response	•	Legacy [Dialogs	•		i o guloro	
🔣 Missir	ng Value Anal <u>y</u> sis		Eogaoja	Januago			ii-square	
Multip	le Imputation	•				0/1 <u>B</u> ir	nomial	
Com	olex Samples	•				AAAB <u>R</u> u	ins	
🖶 Simul	ation					<u>1</u> -9	Sample K-S	
Quali	ty Control					<u>2</u> 1	ndependent Sa	imples
ROC	Cur <u>v</u> e					<u>K</u> I	ndependent Sa	amples
IBM S	PSS <u>A</u> mos					📉 2 F	Related Sample	es
20	10,00		1			🔣 KI	Related <u>S</u> ampl	es

İşlemler yapıldıktan sonra karşınıza **"Two-Related Samples Tests"** iletişim penceresi gelecektir. Bu pencereden inceleyeceğiniz ön test değişkeni "Örnekte Faktör1" **"Variable1"** kutucuğunun içine, son test değişkeni "örnekte Faktör2" **"Variable2"** satırına oklar yardımıyla gönderin. Sonrasında **"Wilcoxon"** kutucuğunu işaretleyerek **"OK"** seçeneğine tıklayın.

Two-Related-Samples Tests			ang grant	- 1999.00	-	x
 ✓ M20 ✓ M21 ✓ M21 ✓ M22 ✓ M23 ✓ M24 ✓ M25 ✓ M26 ✓ M26 ✓ M27 ✓ M28 ✓ M28 ✓ M29 ✓ M30 ✓ Faktör1 ✓ Faktör2 	×	Test Pair 1 2 Test Ty Wilc Sigr Marg	s: Variable1 (Faktör1) pe coxon lemar ginal <u>H</u> omoger <u>R</u> eset Can	Variable2 (Faktör2) heity cel Help	 ★ ★ ★ 	Exact Options

Bu aşamadan sonra karşınıza aşağıdakine benzer bir tablo gelecektir.

Ranks						
		N	Mean Rank	Sum of Ranks		
Faktör2 - Faktör1	Negative Ranks	41 ^a	25,85	1060,00		
	Positive Ranks	6 ^b	11,33	68,00		
	Ties	3 ^c				
	Total	50				

a. Faktör2 < Faktör1

b. Faktör2 > Faktör1

c. Faktör2 = Faktör1

Test Statistics ^a				
	Faktör2 -			
	Faktör1			
Z	-5,257 ^b			
Asymp. Sig. (2-tailed)	,000			

a. Wilcoxon Signed Ranks Test

b. Based on positive ranks.

"Test Statistics" tablosunda Asymp. Sig. (2-tailed) - Anlamlılık" satırındaki değerin 0,000 olduğu görülmektedir. Söz konusu bu değer **p=0,000<0,05** olduğundan alternatif hipotezi kabul etmemiz gerekmektedir. Yani ilk ölçüm ile son ölçüm düzeyi arasında %5 güvenle istatistiksel olarak anlamlı bir farklılık vardır yorumunu yapabiliriz.

TEK YÖNLÜ VARYANS ANALİZİ (ANOVA)

Daha önceki başlıklarda grubumuz 2 değişkenli olduğu durumlardan bahsetmiştik. Bu aşamada ise ikiden fazla grup olduğunda hangi analizler yapılması gerektiğinden bahsedeceğiz. İkiden fazla grup karşılaştırılmasında (örneğin yaş, eğitim durumu vb.) veriler normal dağılımlı ise **"Tek Yönlü Varyans Analizi (ANOVA)"** kullanılması gerekmektedir.

SPSS'de **"Tek Yönlü Varyans Analizi (ANOVA)"** için izlenmesi gereken yol **"ANALYZE → COMPARE MEANS → ONE-WAY ANOVA"** şeklindedir.

	<u>A</u> nalyze	Direct <u>M</u> arketing	<u>G</u> raphs	<u>U</u> tilities	Add- <u>o</u> ns	<u>W</u> indow	<u>H</u> elp
	Repo	rts	•	*			
4	D <u>e</u> sc	riptive Statistics	•				
	Ta <u>b</u> le	S	*				
t	Co <u>m</u>	oare Means	•	Means	S		
_	<u>G</u> ene	ral Linear Model	*	C One-S	ample T Te	st	_
_	Gene	rali <u>z</u> ed Linear Mode	ls 🕨	lndep	- · endent-San	nples T Test	_
_	Mixed	Models	*	Paireo	-Samples	T Test	-
_	<u>C</u> orre	late	*			11000	-
_	<u>R</u> egre	ession	*	<u>One-v</u>	vay ANOVA.		
_	L <u>o</u> glir	near	*				
_	Neura	al Net <u>w</u> orks	*				
-	Class	sify	*				
-	<u>D</u> ime	nsion Reduction	*				
-	Sc <u>a</u> le	ł.	*				
-	<u>N</u> onp	arametric Tests	*				
-	Forec	as <u>t</u> ing	*				
-	<u>S</u> urviv	/al	*				
-	M <u>u</u> ltip	le Response	•				
-	ジ Missir	ng Value Analysis					
	Multip	le Imputation	•				
_	Com	olex Samples	•				
	Bimul	ation					
	Quali	ty Control	•				
	ROC	Curve					
	IBM S	PSS Amos					
	20	-					

İşlemler yapıldıktan sonra karşınıza **"One-Way ANOVA"** iletişim penceresi gelecektir. Bu pencereden inceleyeceğiniz değişkeni "Örnekte Faktör1" **"Dependent List"** kutucuğunun içine, gruplandırmada kullanacağınız değişkeni "örnekte Eğitim durumu" **"Faktor"** satırına oklar yardımıyla gönderin.

🔒 One-Way ANOVA		
M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 OK	Dependent List:	Contrasts Post <u>H</u> oc Options Bootstrap

Bu aşamadan sonra her bir gruba ait tanımlayıcı istatistikleri (ortalama, standart sapma vb.) görebilmek için "**Options**" seçeneğini tıklayın ve aşağıda verilen iletişim kutusundaki "**Descriptive**" seçeneğini işaretleyin.

-	MIU	-
	Cone-Way ANOVA: Options	Ŋ
	Statistics	
	Descriptive	
1	Fixed and random effects	
l	Homogeneity of variance test	
1	Brown-Forsythe	
ł	Welch	
	🕅 Means plot	
ł	Missing Values	
	Exclude cases analysis by analysis	
	© Exclude cases listwise	
	Continue Cancel Help	

Şimdi sırasıyla **"Continue ve Post Hoc"** seçeneklerine tıklayın ve karşınıza aşağıdaki gibi bir iletişim kutusu gelecektir. Buradan **"Tukey"** seçeneğini işaretleyin.

	M40						
🔚 One-Way ANOVA: Pe	ost Hoc Multiple Cor	mparisons X					
-Equal Variances Ass	umed						
	S-N-K	Waller-Duncan					
Bonferroni	✓ Tukey	Type I/Type II Error Ratio: 100					
Sidak	Tukey's-b	Dunnett					
Scheffe	Duncan	Control Category : Last					
🔲 <u>R</u> -E-G-W F	🔲 <u>H</u> ochberg's GT2	Test					
🔲 R-E-G-W <u>Q</u>	🔲 <u>G</u> abriel	O 2-sided O < Control O > Control					
E	A						
Equal Variances Not	Assumed						
🔲 Ta <u>m</u> hane's T2	🔲 Dunnett's T <u>3</u>	🔲 G <u>a</u> mes-Howell 📄 D <u>u</u> nnett's C					
Significance level: 0.05							
Continue Cancel Help							

Not: Varyans analizi farklı grupların birbirinden farklı olup olmadığını gösterir. Ancak farklılıkların hangi gruplar arasında olduğunu belirtmez. Bunun için varyans analizlerine ilave olarak **"Tukey"** testinin yapılmasında yarar vardır.

Bu işlemler sonrasında sırasıyla **"Continue ve OK"** seçeneklerini tıkladığınızda karşınıza aşağıdakilerin benzeri tablolar gelecektir.

Eăitim	N	Mean	Std. Deviation	Std. Error
İlkokul	2	14,50	3,536	2,500
Ortaokul	4	22,25	4,856	2,428
Lise	11	22,18	3,868	1,166
Üniversite	26	21,81	4,418	,867
Yüksek lisans/Doktora	7	24,00	4,082	1,543
Total	50	21,94	4,433	,627

Descriptives

Tabloda eğitim durumu sorulmuş ve eğitim düzeylerine göre ortalamalar ve standart sapma ve standart hatalar gözükmektedir. Buradaki ortalamaların rastlantısal bir farklılık mı olduğu yoksa gerçek bir fark mı olduğunu belirleyebilmek için "ANOVA" tablosunu incelemek gerekir.

Faktör1					
	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	141,895	4	35,474	1,945	,000
Within Groups	820,925	45	18,243		
Total	962,820	49			

ANOVA

"ANOVA" tablosunun "Sig. (Anlamlılık)" sütunundaki değerin 0,000 olduğu görülmektedir. Söz konusu değer 0,05'den küçük olduğu için, Eğitim düzeyi ile Faktör1 arasında ortalamalar yönünden %5 güvenle istatistiksel olarak anlamlı bir farklılık vardır yorumunu yapabiliriz. Bununla birlikte daha önce de ifade edildiği gibi "ANOVA" tablosu gruplar arasındaki farklılıklar bir bütün olarak değerlendirir. Diğer bir ifade ile hangi ikili gruplar arasındaki farklı anlamlı olduğuna ilişkin bilgi vermez. Bunun için aşağıdaki "Tukey" testi tablosu incelenmelidir.

Dependent Variable: Fakt	ör1			
Tukey HSD				
	-	Mean Difference		
(I) Eğitim	(J) Eğitim	(I-J)	Std. Error	Sig.
İlkokul	Ortaokul	-7,750	3,699	,240
	Lise	-7,682*	3,283	,010
	Üniversite	-7,308	3,134	,154
	Yüksek lisans/Doktora	-9,500	3,425	,059
Ortaokul	İlkokul	7,750	3,699	,240
	Lise	,068	2,494	1,000
	Üniversite	6,442*	2,294	,015
	Yüksek lisans/Doktora	-1,750	2,677	,965
Lise	İlkokul	7,682*	3,283	,010
	Ortaokul	-,068	2,494	1,000
	Üniversite	,374	1,536	,999
	Yüksek lisans/Doktora	-1,818	2,065	,903
Üniversite	İlkokul	7,308	3,134	,154
	Ortaokul	6,442*	2,294	,015
	Lise	-,374	1,536	,999
	Yüksek lisans/Doktora	-2,192	1,819	,748
Yüksek lisans/Doktora	İlkokul	9,500	3,425	,059
	Ortaokul	1,750	2,677	,965
	Lise	1,818	2,065	,903
	Üniversite	2,192	1,819	,748

Multiple Comparisons

*. The mean difference is significant at the .05 level

Tablonun anlamlılık sütunundaki değerlerden ilkokul eğitim düzeyine sahip olanlar ile lise eğitim düzeyine sahip olanlar arasında ve ortaokul eğitim düzeyine sahip olanlar ile üniversite eğitim düzeyine sahip olanlar arasında p<0,05 olduğu için istatistiksel olarak %5 güvenle anlamlı bir farklılık vardır yorumu yapılabilir.

KRUSKALL-WALLİS H TESTİ

Bu aşamada ise ikiden fazla grup olduğunda hangi analizler yapılması gerektiğinden bahsedeceğiz. İkiden fazla grup karşılaştırılmasında (örneğin yaş, eğitim durumu vb.) veriler normal dağılımlı değil ise **"Kruskal-Wallis H Testi"** kullanılması gerekmektedir.

SPSS'de **"Tek Yönlü Varyans Analizi (ANOVA)"** için izlenmesi gereken yol **"ANALYZE \rightarrow NONPARAMETRIC TESTS** \rightarrow **K INDEPENDENT SAMPLES"** şeklindedir.

	<u>A</u> nalyze	Direct <u>M</u> arketing	<u>G</u> raphs	<u>U</u> tilities Ad	ld- <u>o</u> ns <u>W</u> ind	low <u>H</u>	<u>H</u> elp		
	Repo	rts	•	*	2 💻 4	\$7			
1	D <u>e</u> sci	riptive Statistics	•			- -		14	
	Ta <u>b</u> le	s	•						
t	Co <u>m</u> p	oare Means	•	var	var	Va	ar	var	var
_	<u>G</u> ene	ral Linear Model	•						
_	Gene	rali <u>z</u> ed Linear Mode	ls 🕨						
_	Mi <u>x</u> ed	Models	•						
_	<u>C</u> orre	late	•						
_	Regre	ession	•						
_	L <u>o</u> glir	near	•						
_	Neura	al Net <u>w</u> orks	•						
_	Class	sify	•						
-	Dime	nsion Reduction	•						
-	Sc <u>a</u> le		•						
-	Nonp	arametric Tests	•	💧 One Sam	ole				
-	Forec	asting	•	/ Independe	ent Samples				
-	<u>S</u> urviv	al	•	Related S	amples				
-	M <u>u</u> ltip	le Response	•	Legacy Di	ialogs	•		i oguara	
	ジ Missir	ng Value Analysis		=======				ii-square	-
	Multip	le Imputation	•				MT RIL	iomiai	_
	Comp	lex Samples	•				AAAB <u>R</u> u	ins	-
	🖶 Simula	ation					<u>1</u> -9	Sample K-S	-
	<u>Q</u> ualit	ty Control	•				<u>2</u> 1	ndependent Sa	imples
	ROC	Cur <u>v</u> e					<u> </u>	ndependent Sa	amples
_	IBM SI	PSS <u>A</u> mos					📉 2 F	Related Sample	es
_	20	10,00		1			🕱 K F	Related Sample	es

Karşınıza aşağıdaki **"Test for Several Independent Samples"** iletişim penceresi gelecektir. Bu pencereden inceleyeceğiniz değişkeni (Örnekte, Faktör1) **"Test Variable List"** kutucuğunun içine, gruplandırmada kullanacağınız değişkeni (Örnekte, Eğitim durumu) **"Grouping Variable"** satırına, aradaki okları kullanarak gönderin.

Tests for Several Indepe	endent Samples	x		
	Test Variable List:	Exact		
A M23	Faktör1	Options		
M24	*			
💑 M26				
A M27				
▲ M29	Grouping Variable:	_		
💑 МЗО	Eğitim(??)	_		
🖋 Faktör2	Define Range			
_ Test Type				
🗹 Kruskal-Wallis H 🛛 🕅 Median				
Jonckheere-Terpstra				
OK Paste Reset Cancel Help				
<u></u>				

Şimdi kullanacağınız grupları tanımlamanız gerek. Bunun için **"Define Range"** seçeneğini tıklayın. Karşınıza aşağıdaki iletişim kutusu gelecektir.

😭 Several Independent Samp 🗾 🎽				
Range for Grouping Variable				
Mi <u>n</u> imum: 1				
Ma <u>x</u> imum: 5				
Continue Cancel Help				

Burada İlköğretim "1", Ortaokul "2", Lise "3", Üniversite "4" ve Lisansüstü "5" temsil edildiğinden minimum kutucuğuna "1", maksimum kutucuğuna "5" girdik. Şimdi sırasıyla **"Kruskal-Wallis H, Continue ve OK"** tuşlarını tıklayın ve karşınıza aşağıdakilere benzer tablolar gelecektir.

Ranks				
	Eğitim	N	Mean Rank	
Faktör1	İlköğretim	4	7,88	
	Ortaokul	4	9,13	
	Lise	5	13,70	
	Üniversite	3	12,67	
	Lisansüstü	4	8,88	
	Total	20		

Test Statistics ^{a,b}				
	Faktör1			
Chi-Square	3,185			
df	4			
Asymp. Sig.	,005			

a. Kruskal Wallis Test

b. Grouping Variable:

Eğitim

"Test Statistics" tablosunun **"Asymp. Sig. (Anlamlılık)"** satırındaki değerin 0,005 olduğu görülmektedir. Söz konusu değer p=0,005<0,05 olduğu için Eğitim düzeyleri ile Faktör1 düzeyi arasında istatistiksel olarak %95 güvenle anlamlı bir farklılık vardır yorumu yapabilir.